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Abstract 

The accurate prediction of binding affinities between proteins and drugs is crucial in drug 

discovery and development. Traditional protein-ligand docking methods, however, face significant 

limitations, such as the reliance on high-quality, rigid protein structures, and often fail to account 

for protein flexibility and conformational changes upon ligand binding. This proposal aims to 

address these challenges by developing a novel AI-based model that predicts the binding affinity 

between proteins and drugs using their 3D structures and sequence information. Leveraging recent 

advances in machine learning and deep learning, the proposed model will predict flexible, all-atom 

structures of protein-ligand complexes, providing a more accurate and comprehensive approach to 

binding affinity prediction. This research holds the potential to significantly advance the field of 

drug discovery, leading to more efficient development pipelines and the discovery of novel 

therapeutic compounds. 

 

 



1. Introduction 

Protein-ligand interactions play a critical role in various biological processes, and understanding 

these interactions is essential for developing effective drugs. Traditional protein-ligand docking 

methods, such as AutoDock Vina and Gold, have been widely used for predicting the binding 

affinity of potential drug candidates. However, these methods are limited by their dependence on 

high-quality, rigid protein structures. In reality, proteins are dynamic molecules that undergo 

conformational changes upon ligand binding, and these changes can significantly impact binding 

affinity. As a result, traditional docking methods often fail to accurately predict binding affinities, 

particularly for proteins with unknown structures or those exhibiting significant flexibility [1, 2]. 

In recent years, machine learning and deep learning approaches have shown promise in improving 

protein-ligand docking accuracy. For instance, Bryant et al. (2024) developed the Umol AI system, 

which predicts flexible all-atom structures of protein-ligand complexes directly from sequence 

information. Despite these advancements, challenges remain in accurately predicting binding 

affinities for proteins with unknown structures or those exhibiting significant flexibility. The 

proposed research aims to build upon these foundational studies by developing a model that 

leverages both protein sequence and 3D structural data to predict binding affinities more accurately 

and comprehensively [3]. 

The development of a robust model for predicting protein-ligand binding affinities has significant 

implications for drug discovery and development. Accurate predictions can streamline the drug 

discovery process, reducing the need for extensive experimental testing and accelerating the 

identification of promising drug candidates. By addressing the limitations of traditional docking 

methods and leveraging advances in machine learning, this research has the potential to transform 

the field of drug discovery, making it more efficient and effective. 

2. Literature Review 

Recent studies have explored various machine learning approaches to improve protein-ligand 

docking accuracy. Bryant et al. (2024) developed the Umol AI system, which predicts flexible all-

atom structures of protein-ligand complexes from sequence information, demonstrating significant 

improvements over traditional methods. Umol leverages deep learning techniques to predict fully 



flexible, all-atom structures of protein-ligand complexes, addressing the limitations of traditional 

docking methods that treat proteins as rigid or partially rigid entities [3]. 

In addition to Umol, Harren et al. (2024) provided a comprehensive review of modern machine-

learning techniques for binding affinity estimation. The review highlights the potential of deep 

learning models in improving the accuracy of binding affinity predictions, particularly for proteins 

with unknown structures or those exhibiting significant flexibility. The authors discuss various 

approaches, including convolutional neural networks (CNNs), graph neural networks (GNNs), and 

attention-based models, and their applications in predicting protein-ligand interactions [4]. 

Other notable contributions include the development of DiffDock by Corso et al. (2022), which 

uses diffusion models for molecular docking, and RoseTTAFold All-Atom by Baek et al. (2021), 

which incorporates 3D structural information for enhanced prediction accuracy. DiffDock 

leverages diffusion processes and deep learning to improve the accuracy of docking predictions, 

while RoseTTAFold All-Atom integrates structural information to predict interactions between 

proteins and ligands more accurately. These studies underscore the potential of integrating 

advanced machine learning techniques with structural bioinformatics to improve binding affinity 

predictions [5, 6]. 

While these advancements represent significant progress in the field of protein-ligand docking, 

challenges remain in predicting accurate binding affinities for proteins with unknown structures or 

those exhibiting significant flexibility. Traditional docking methods often fail to account for the 

dynamic nature of proteins, leading to inaccurate predictions. Moreover, many existing machine 

learning models rely on high-quality structural data, limiting their applicability to proteins with 

unknown or poorly resolved structures [4]. 

The proposed research aims to address these limitations by developing a machine learning model 

that leverages both protein sequence and 3D structural data to predict binding affinities more 

accurately and comprehensively. By incorporating flexibility and conformational changes into the 

model, the proposed approach aims to overcome the challenges faced by traditional docking 

methods and existing machine learning models. 

3. Research Question 



How can a machine learning model be developed to accurately predict the binding affinity of 

protein-ligand complexes using their 3D structures and sequence information, accounting for 

protein flexibility and conformational changes? 

4. Methodology 

4.1. Data Collection 

The dataset for this research will be compiled from existing protein-ligand complexes available in 

databases such as PDBbind and BindingDB. These databases contain a wealth of experimental 

data on protein-ligand interactions, including high-quality affinity measurements and diverse 

structural features. To ensure the robustness and generalizability of the model, the dataset will 

include a wide range of protein-ligand complexes, covering various protein families, ligand types, 

and binding modes. 

In addition to the existing data, molecular dynamics simulations will be used to generate additional 

data, capturing a range of protein conformations. These simulations will provide valuable insights 

into the dynamic nature of protein-ligand interactions, enabling the model to account for flexibility 

and conformational changes. The generated data will be integrated with the experimental data to 

create a comprehensive dataset for training and evaluation. 

4.2. Model Architecture 

The proposed model will extend the EvoFormer architecture from AlphaFold2, integrating 

elements from Umol and other state-of-the-art methods. The EvoFormer architecture is a powerful 

framework for protein structure prediction, leveraging multiple sequence alignments (MSAs) and 

structural templates to predict protein structures accurately. In this research, the EvoFormer 

architecture will be adapted to predict protein-ligand complexes, incorporating flexibility and 

conformational changes [7]. 

The model will consist of multiple blocks processing both sequence and structural data, 

incorporating attention mechanisms to capture interactions between protein residues and ligand 

atoms. The attention mechanisms will enable the model to focus on relevant regions of the protein 



and ligand, capturing the key interactions that determine binding affinity. The model will also 

include modules for predicting the flexible, all-atom structure of protein-ligand complexes, 

leveraging the powerful capabilities of deep learning to capture the complex nature of protein-

ligand interactions. 

4.3. Training and Evaluation 

The model will be trained using supervised learning techniques, with loss functions designed to 

optimize both the accuracy of structural predictions and binding affinity estimations. The training 

process will involve multiple stages, including pre-training on large datasets of protein sequences 

and structures, followed by fine-tuning on the dataset of protein-ligand complexes. During 

training, the model will learn to predict the 3D structures of protein-ligand complexes from 

sequence information, as well as the corresponding binding affinities. 

To ensure the robustness and generalizability of the model, cross-validation will be employed 

during training. The dataset will be divided into multiple folds, with each fold used for training 

and validation in turn. This approach will help to mitigate overfitting and ensure that the model 

performs well on unseen data. 

Performance will be evaluated using a range of metrics, including Root Mean Square Deviation 

(RMSD) for structural accuracy and Pearson correlation for binding affinity predictions. RMSD 

will measure the accuracy of the predicted 3D structures, while Pearson correlation will assess the 

relationship between the predicted and experimental binding affinities. Additional metrics, such 

as precision and recall, will also be used to evaluate the model's performance in different scenarios. 

5. Results and Discussion 

The results of the proposed research are expected to demonstrate significant improvements in the 

accuracy of binding affinity predictions for protein-ligand complexes. By leveraging both 

sequence and structural data, and incorporating flexibility and conformational changes, the 

proposed model aims to overcome the limitations of traditional docking methods and existing 

machine learning models. 



The anticipated outcomes include: 

1. Improved Prediction Accuracy: The model is expected to achieve higher accuracy in 

predicting the 3D structures of protein-ligand complexes, as measured by RMSD. This will 

demonstrate the model's ability to capture the dynamic nature of protein-ligand interactions 

and account for flexibility and conformational changes. 

2. Enhanced Binding Affinity Predictions: The model is expected to show strong 

correlations between predicted and experimental binding affinities, as measured by 

Pearson correlation. This will validate the model's ability to accurately predict binding 

affinities from sequence and structural data. 

3. Robustness and Generalizability: The use of cross-validation and comprehensive 

evaluation metrics will ensure the robustness and generalizability of the model. The model 

is expected to perform well on unseen data, demonstrating its applicability to a wide range 

of protein-ligand complexes. 

4. Insights into Protein-Ligand Interactions: The research will provide valuable insights 

into the key factors that determine binding affinity, including the roles of flexibility and 

conformational changes. These insights can inform the development of more effective 

therapeutic agents and guide future research in the field. 

6. Future Directions 

The proposed research represents a significant step forward in the field of protein-ligand docking 

and binding affinity prediction. However, there are several avenues for future research that can 

build upon the findings of this study: 

1. Integration with Experimental Data: Future research can explore the integration of 

additional experimental data, such as cryo-electron microscopy (cryo-EM) and nuclear 

magnetic resonance (NMR) data, to further enhance the accuracy of binding affinity 

predictions. 

2. Expansion to Other Biomolecular Interactions: The methodologies developed in this 

research can be extended to other types of biomolecular interactions, such as protein-



protein and protein-DNA interactions. This can broaden the applicability of the model and 

contribute to a deeper understanding of biomolecular interactions. 

3. Development of Generative Models: Building on the predictive capabilities of the 

proposed model, future research can explore the development of generative models for 

designing novel ligands with desired binding affinities. These models can leverage the 

learned representations of protein-ligand interactions to generate new compounds with 

high binding affinity. 

4. Exploration of Transfer Learning: Transfer learning techniques can be investigated to 

improve the model's performance on specific protein families or ligand types. By fine-

tuning the model on domain-specific data, researchers can enhance its predictive accuracy 

for targeted applications. 

5. Collaborative Efforts and Open Science: Encouraging collaborative efforts and open 

science practices can accelerate progress in the field. Sharing data, models, and findings 

with the scientific community can foster innovation and lead to new breakthroughs in drug 

discovery and development. 

Conclusion 

The proposed research aims to develop a novel AI-based model for predicting the binding affinity 

between proteins and drugs using their 3D structures and sequence information. By leveraging 

advances in machine learning and deep learning, the proposed model will predict flexible, all-atom 

structures of protein-ligand complexes, providing a more accurate and comprehensive approach to 

binding affinity prediction. The research holds the potential to significantly advance the field of 

drug discovery, leading to more efficient development pipelines and the discovery of novel 

therapeutic compounds. 

The anticipated outcomes include improved prediction accuracy, enhanced binding affinity 

predictions, robustness, and generalizability, and valuable insights into protein-ligand interactions. 

The research represents a significant step forward in the field of protein-ligand docking and 

binding affinity prediction and paves the way for future advancements in drug discovery and 

development. 
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